Week 13 - Monday

Last time

- What did we talk about last time?
- Exam 3 post mortem
- Finished Co-NP
- A little theory of computing

Questions?

Assignment 7

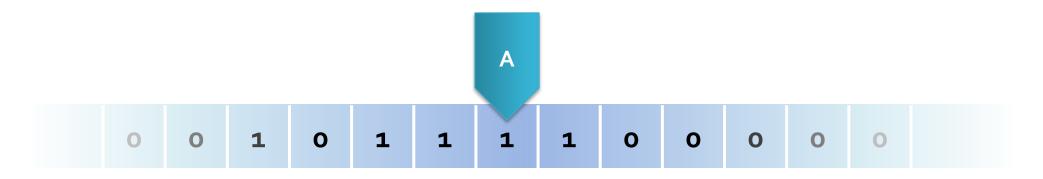
Logical warmup

- You are the despotic ruler of an ancient empire
- Tomorrow is the 25th anniversary of your reign
- You have 1,000 bottles of wine you were planning to open for the celebration
- Your Grand Vizier uncovered a plot to murder you:
 - 10 years ago, a rebel worked in the vineyard that makes your wine
 - He poisoned one of the 1,000 bottles you are going to serve tonight and has been waiting for revenge
 - The rebel died an accidental death, and his papers revealed his plan, but not which bottle was poisoned
- The poison exhibits no symptoms until death
- Death occurs within ten to twenty hours after consuming even the tiniest amount of poison
- You have over a thousand slaves at your disposal and just under 24 hours to determine which single bottle is poisoned
- You have a few hundred prisoners, sentenced to death
- Can you use just the prisoners and risk no slaves?
- If so, what's the smallest number of prisoners you can risk and still be sure to find the bottle?

Computability

Turing machine

- A Turing machine is a mathematical model for computation
- It consists of a head, an infinitely long tape, a set of possible states, and an alphabet of characters that can be written on the tape
- A list of rules saying what it should write and should it move left or right given the current symbol and state



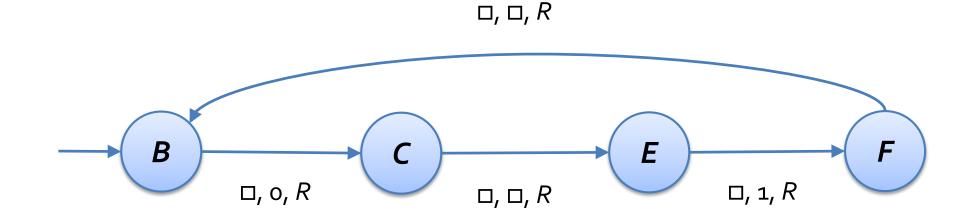
Turing machine example

- You can specify a Turing machine with a table giving its behavior for a specific configuration
- Turing's first example machine printed an infinite sequence of alternating 1s and os, separated by spaces:

Configuration		Behavior	
State	Symbol	Operation	Result State
В	Blank	Write o, Move Right	С
С	Blank	Write Blank, Move Right	E
E	Blank	Write 1, Move Right	F
F	Blank	Write Blank, Move Right	В

A Turing machine as a transition diagram

The transition table from the previous slide can be drawn as a transition diagram too:



Church-Turing thesis

- If an algorithm exists, a Turing machine can perform that algorithm
- In essence, a Turing machine is the most powerful model we have of computation
- Power, in this sense, means the *ability* to compute some function, not the *speed* associated with its computation
- Do you own a Turing machine?

Halting problem

- Given a Turing machine and input x, does it reach the halt state?
- First, recognize that we can encode a Turing machine as input for another Turing machine
 - We just have to design a system to describe the rules, the states, etc.
- We want to design a Turing machine that can read another

Turntables

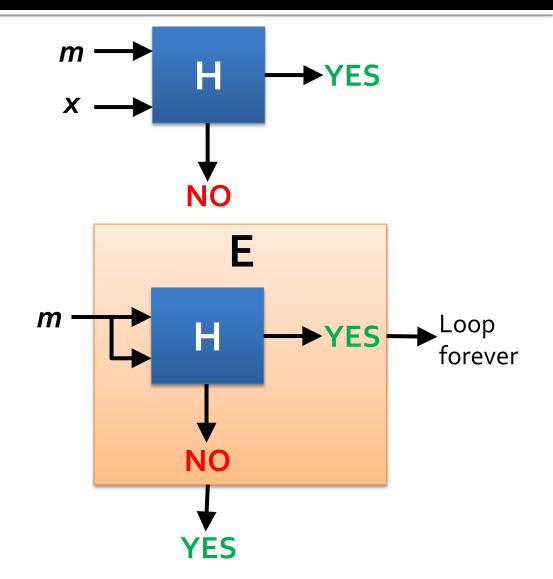
- Douglas Hofstadter uses the metaphor of turntables
- Imagine that evil people design records that will shake turntables apart when they're played
- Maybe turntable A can play record
 A and turntable B can play record B
- However, if turntable A plays record
 B, it will shatter

Stuff you have to buy for this proof

- Turing machines can perform all possible computations
- It's possible to encode the way a Turing machine works such that another Turing machine can read it
- It's easy to make a slight change to a Turing machine so that it gives back the opposite answer (or goes into an infinite loop)

Proof by contradiction

- You've got a Turing machine M with encoding m
- You want to see if M will halt on input x
- Assume there is a machine H that can take encoding m and input x
 - H(m,x) is YES if it halts
 - H(m,x) is NO if it loops forever
- We create (evil) machine E that takes description m and runs H(m,m)
 - If H(m,m) is YES, E loops forever
 - If H(m,m) is NO, E returns YES



A mind-bending proof

- Let's say that *e* is the description of E
- What happens if you feed description *e* into *E*?
 - E(e) says what E will do with itself as input
- If it returns YES, that means that E on input e loops forever
 - But it can't, because it just returned YES
- If it loops forever, then E on input *e* would return YES
 - But it can't, because it's looping forever!
- Our assumption that machine H exists must be wrong

Halting problem conclusion

- Clearly, a Turing machine that solves the halting problem doesn't exist
- Essentially, the problem of deciding if a problem is computable is itself uncomputable
- Therefore, there are some problems (called undecidable) for which there is no algorithm
- Not an algorithm that will take a long time, but **no algorithm**
- If we find such a problem, we are stuck
- ... unless someone can invent a more powerful model of computation

Post correspondence problem

- Given two finite lists of words A and B, can you pick k words (repetitions allowed) from A and k words (repetitions allowed) from B so that the words from A concatenated are exactly the same string as the words from B concatenated
- Example:

Α	В
аа	bbbb
aba	а
bb	abba

- Solution:
 - aa + bb + bb = aabbbb = a + a + bbbb
- The Post correspondence problem (PCP) is undecidable (there is no algorithm that can solve all instances of it)

Other undecidable problems

- Are two context-free languages the same?
- Is the intersection of two context-free languages empty?
- Is a context-free language equal to Σ*?
- Is a context-free language a subset of another context-free language?
- Is a given statement of first-order logic provable from a starting set of axioms?
- Given a set of matrices, is there some sequence that they can be multiplied in (perhaps with repetitions) that will yield the zero matrix?

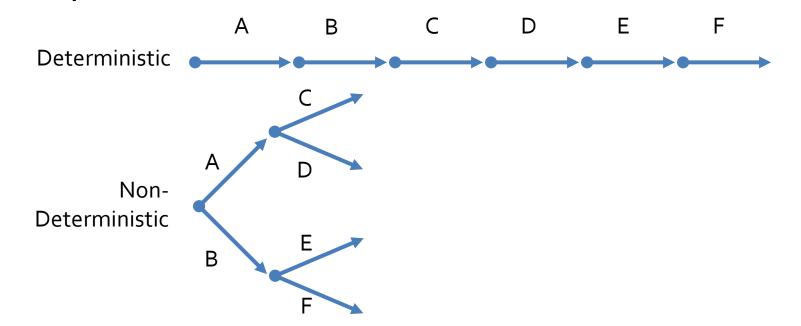
More (useful) undecidable problems

- Does a given Java program have an infinite loop in it?
- Will a given Python program terminate regardless of what inputs it's given?
- Will computation with input x use all states of a Turing machine?
- Given input x, will the output of a C++ program be y?

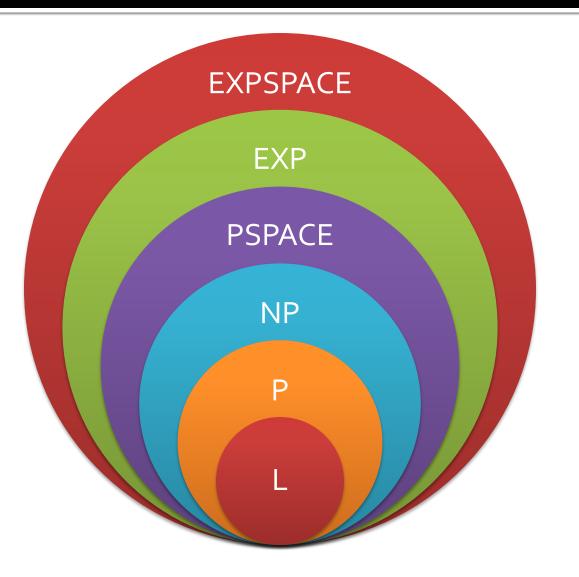
- Problems in NP can be solved in polynomial time on a nondeterministic computer
- A deterministic computer is the kind you know:
 - First it has to consider possibility A, then, it can consider possibility B

Deterministic vs. non-deterministic

 A non-deterministic computer (which, as far as we know, only exists in our imagination) can consider both possibility A and possibility B at the same time

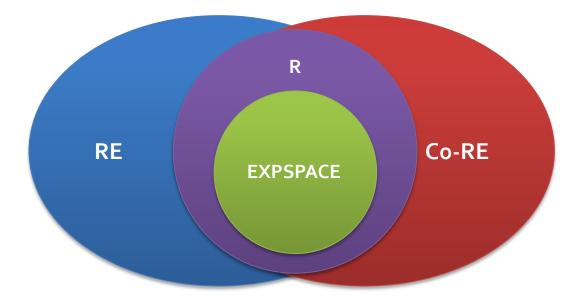


Complexity hierarchy



- EXPSPACE
 - Exponential space
- EXP
 - Exponential time on a deterministic Turing machine
- PSPACE
 - Polynomial space
- NP
 - Polynomial time on a non-deterministic Turing machine
- P
 - Polynomial time on a deterministic Turing machine
- - Logarithmic space on a deterministic Turing machine

Going beyond running time



- R is the set of recursive decision problems
- RE is the set of recursively enumerable decision problems
- **Co-RE** is the complement of set **RE**

- There are also problems that cannot be solved by any computer (or algorithm) in a finite amount of time
- Problems in **R** can be solved by an algorithm in a finite amount of time
- Problems in RE can reach a "yes" answer in a finite amount of time, but no algorithm is guaranteed to reach completion if the answer is "no"
- Problems in Co-RE can reach a "no" answer in a finite amount of time, but no algorithm is guaranteed to reach completion if the answer is "yes"

Three-Sentence Summary of Approximation Algorithms for Load Balancing and Center Selection

Approximation Algorithms

Approximation algorithms

- What can you do when faced with an NP-complete problem?
 - Or, more likely, an NP-hard problem, where you come up with the optimal answer, not just a "yes" or a "no"
- One possibility is using an approximation algorithm
 - You don't get the guarantee of the perfect optimal answer
 - But you might be able to get a reasonably good answer in polynomial time

Load balancing

- You have *m* machines *M*₁, *M*₂,...,*M_m*
- You have *n* jobs

- Each job j has a processing time t_j
 We can assign jobs A(i) to machine M_i
 The total time that M_i needs to work is:

$$T_i = \sum_{j \in A(i)} t_j$$

- We want to minimize the makespan, which is just the longest T_i
- In other words, we want the last machine running to stop running as early as possible
- Unfortunately, doing so in NP-hard

Greedy algorithm

- We can use a simple greedy algorithm for assigning jobs:
 - For each job j, assign it to the machine that has the shortest completion time so far
- Using this algorithm, what would the makespan be for three machines M₁, M₂, and M₃, given the following job sizes:
 - 2, 3, 4, 6, 2, 2
- What would the optimal be?

Lower bound

- Approximation algorithms are often very simple
- The hard part is doing the analysis to show that the result is not too bad relative to optimal
- Can we give a lower bound on how big the optimal makespan *T** must be?
- It cannot be shorter than the longest job, whatever job that is
 Also, if we perfectly balanced the work among *m* machines, each machine would still have to do at least ¹/_m of the total work

Greedy algorithm gets a makespan $T \le 2T^*$

Proof:

- Let *M_i* be the machine that get the maximum load *T* in the greedy assignment
- Let *j* be the last job assigned to *M_i*
- When j was assigned to M_{i} , it had the smallest load of any machine, namely $T_i t_j$
- Thus, every machine had load at least $T_i t_j$

$$\sum_{k=1}^{m} T_k \ge m \left(T_i - t_j \right)$$
$$T_i - t_j \le \frac{1}{m} \sum_{k=1}^{m} T_k$$

Proof continued

• Since
$$\sum_{k=1}^{m} T_k = \sum_{i=1}^{n} j_i$$
 and $\frac{1}{m} \sum_{i=1}^{n} j_i \le T^*$
 $T_i - t_j \le T^*$

But the optimal makespan must be at least as big as any job, thus t_j ≤ T*, thus: T_i = (T_i − t_j) + t_j ≤ T* + T* = 2T*
Since our makespan T = T_i, the proof is done.

Upcoming

Next time...

- Finish load balancing
- Center selection
- Set cover
- Read section 11.3

- Start Assignment 7
- Office hours from 2-4 p.m. today canceled for the eclipse