
Week 13 - Monday

 What did we talk about last time?
 Exam 3 post mortem
 Finished Co-NP
 A little theory of computing

 You are the despotic ruler of an ancient empire
 Tomorrow is the 25th anniversary of your reign
 You have 1,000 bottles of wine you were planning to open for the celebration
 Your Grand Vizier uncovered a plot to murder you:
 10 years ago, a rebel worked in the vineyard that makes your wine
 He poisoned one of the 1,000 bottles you are going to serve tonight and has been waiting

for revenge
 The rebel died an accidental death, and his papers revealed his plan, but not which bottle

was poisoned
 The poison exhibits no symptoms until death
 Death occurs within ten to twenty hours after consuming even the tiniest amount of

poison
 You have over a thousand slaves at your disposal and just under 24 hours to

determine which single bottle is poisoned
 You have a few hundred prisoners, sentenced to death
 Can you use just the prisoners and risk no slaves?
 If so, what's the smallest number of prisoners you can risk and still be sure to find the

bottle?

 A Turing machine is a mathematical model for computation
 It consists of a head, an infinitely long tape, a set of possible

states, and an alphabet of characters that can be written on the
tape

 A list of rules saying what it should write and should it move left or
right given the current symbol and state

0 0 1 0 1 1 1 1 0 0 0 0 0

A

 You can specify a Turing machine with a table giving its
behavior for a specific configuration

 Turing's first example machine printed an infinite sequence of
alternating 1s and 0s, separated by spaces:

Configuration Behavior

State Symbol Operation Result State

B Blank Write 0, Move Right C

C Blank Write Blank, Move Right E

E Blank Write 1, Move Right F

F Blank Write Blank, Move Right B

 The transition table from the previous slide can be drawn as a
transition diagram too:

B C E F
□, 0, R □, □, R □, 1, R

□, □, R

 If an algorithm exists, a Turing machine can perform that
algorithm

 In essence, a Turing machine is the most powerful model we
have of computation

 Power, in this sense, means the ability to compute some
function, not the speed associated with its computation

 Do you own a Turing machine?

 Given a Turing machine and input x, does it reach the halt
state?

 First, recognize that we can encode a Turing machine as input
for another Turing machine
 We just have to design a system to describe the rules, the states, etc.

 We want to design a Turing machine that can read another

 Douglas Hofstadter uses the
metaphor of turntables

 Imagine that evil people design
records that will shake turntables
apart when they're played

 Maybe turntable A can play record
A and turntable B can play record B

 However, if turntable A plays record
B, it will shatter

 Turing machines can perform all possible computations
 It's possible to encode the way a Turing machine works such

that another Turing machine can read it
 It's easy to make a slight change to a Turing machine so that it

gives back the opposite answer (or goes into an infinite loop)

 You've got a Turing machine M with
encoding m

 You want to see if M will halt on input x
 Assume there is a machine H that can

take encoding m and input x
 H(m,x) is YES if it halts
 H(m,x) is NO if it loops forever

 We create (evil) machine E that takes
description m and runs H(m,m)
 If H(m,m) is YES, E loops forever
 If H(m,m) is NO, E returns YES

H
m

x
YES

NO

H YES

NO

E
m Loop

forever

YES

 Let's say that e is the description of E
 What happens if you feed description e into E?
 E(e) says what E will do with itself as input

 If it returns YES, that means that E on input e
loops forever
 But it can't, because it just returned YES

 If it loops forever, then E on input e would
return YES
 But it can't, because it's looping forever!

 Our assumption that machine H exists must be
wrong

 Clearly, a Turing machine that solves the halting problem doesn’t
exist

 Essentially, the problem of deciding if a problem is computable is
itself uncomputable

 Therefore, there are some problems (called undecidable) for
which there is no algorithm

 Not an algorithm that will take a long time, but no algorithm
 If we find such a problem, we are stuck
 … unless someone can invent a more powerful model of

computation

 Given two finite lists of words A and B, can you pick k words (repetitions allowed) from A
and k words (repetitions allowed) from B so that the words from A concatenated are
exactly the same string as the words from B concatenated

 Example:

 Solution:
 aa + bb + bb = aabbbb = a + a + bbbb

 The Post correspondence problem (PCP) is undecidable (there is no algorithm that can
solve all instances of it)

A B

aa bbbb

aba a

bb abba

 Are two context-free languages the same?
 Is the intersection of two context-free languages empty?
 Is a context-free language equal to Σ*?
 Is a context-free language a subset of another context-free

language?
 Is a given statement of first-order logic provable from a starting

set of axioms?
 Given a set of matrices, is there some sequence that they can be

multiplied in (perhaps with repetitions) that will yield the zero
matrix?

 Does a given Java program have an infinite loop in it?
 Will a given Python program terminate regardless of what

inputs it's given?
 Will computation with input x use all states of a Turing

machine?
 Given input x, will the output of a C++ program be y?

 Problems in NP can be solved in polynomial time on a non-
deterministic computer

 A deterministic computer is the kind you know:
 First it has to consider possibility A, then, it can consider possibility B

 A non-deterministic computer (which, as far as we know, only
exists in our imagination) can consider both possibility A and
possibility B at the same time

Deterministic
A B C D E F

A

B

C

D

E

F

Non-
Deterministic

 EXPSPACE
 Exponential space

 EXP
 Exponential time on a deterministic Turing

machine
 PSPACE
 Polynomial space

 NP
 Polynomial time on a non-deterministic Turing

machine
 P
 Polynomial time on a deterministic Turing

machine
 L
 Logarithmic space on a deterministic Turing

machine

EXPSPACE

EXP

PSPACE

NP

P

L

RE Co-RE

 There are also problems that cannot be solved by any computer (or algorithm) in a finite amount of
time

 Problems in R can be solved by an algorithm in a finite amount of time
 Problems in RE can reach a "yes" answer in a finite amount of time, but no algorithm is guaranteed

to reach completion if the answer is "no"
 Problems in Co-RE can reach a "no" answer in a finite amount of time, but no algorithm is

guaranteed to reach completion if the answer is "yes"

R

EXPSPACE

 R is the set of recursive decision
problems

 RE is the set of recursively
enumerable decision problems

 Co-RE is the complement of set RE

 What can you do when faced with an NP-complete problem?
 Or, more likely, an NP-hard problem, where you come up with the

optimal answer, not just a "yes" or a "no"
 One possibility is using an approximation algorithm
 You don't get the guarantee of the perfect optimal answer
 But you might be able to get a reasonably good answer in

polynomial time

 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running

as early as possible
 Unfortunately, doing so in NP-hard

 We can use a simple greedy algorithm for assigning jobs:
 For each job j, assign it to the machine that has the shortest

completion time so far
 Using this algorithm, what would the makespan be for three

machines M1, M2, and M3, given the following job sizes:
 2, 3, 4, 6, 2, 2

 What would the optimal be?

 Approximation algorithms are often very simple
 The hard part is doing the analysis to show that the result is

not too bad relative to optimal
 Can we give a lower bound on how big the optimal makespan

T* must be?
 It cannot be shorter than the longest job, whatever job that is
 Also, if we perfectly balanced the work among m machines,

each machine would still have to do at least 1
𝑚𝑚

of the total
work

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi

 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –
tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 But the optimal makespan must be at least as big as any job,

thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗, thus:
𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ + 𝑇𝑇∗ = 2𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 Finish load balancing
 Center selection
 Set cover
 Read section 11.3

 Start Assignment 7
 Office hours from 2-4 p.m. today canceled for the eclipse

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Computability
	Turing machine
	Turing machine example
	A Turing machine as a transition diagram
	Church-Turing thesis
	Halting problem
	Turntables
	Stuff you have to buy for this proof
	Proof by contradiction
	A mind-bending proof
	Halting problem conclusion
	Post correspondence problem
	Other undecidable problems
	More (useful) undecidable problems
	NP
	Deterministic vs. non-deterministic
	Complexity hierarchy
	Going beyond running time
	Three-Sentence Summary of Approximation Algorithms for Load Balancing and Center Selection
	Approximation Algorithms
	Approximation algorithms
	Load balancing
	Greedy algorithm
	Lower bound
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Upcoming
	Next time…
	Reminders

