
Week 13 - Monday

 What did we talk about last time?
 Exam 3 post mortem
 Finished Co-NP
 A little theory of computing

 You are the despotic ruler of an ancient empire
 Tomorrow is the 25th anniversary of your reign
 You have 1,000 bottles of wine you were planning to open for the celebration
 Your Grand Vizier uncovered a plot to murder you:
 10 years ago, a rebel worked in the vineyard that makes your wine
 He poisoned one of the 1,000 bottles you are going to serve tonight and has been waiting

for revenge
 The rebel died an accidental death, and his papers revealed his plan, but not which bottle

was poisoned
 The poison exhibits no symptoms until death
 Death occurs within ten to twenty hours after consuming even the tiniest amount of

poison
 You have over a thousand slaves at your disposal and just under 24 hours to

determine which single bottle is poisoned
 You have a few hundred prisoners, sentenced to death
 Can you use just the prisoners and risk no slaves?
 If so, what's the smallest number of prisoners you can risk and still be sure to find the

bottle?

 A Turing machine is a mathematical model for computation
 It consists of a head, an infinitely long tape, a set of possible

states, and an alphabet of characters that can be written on the
tape

 A list of rules saying what it should write and should it move left or
right given the current symbol and state

0 0 1 0 1 1 1 1 0 0 0 0 0

A

 You can specify a Turing machine with a table giving its
behavior for a specific configuration

 Turing's first example machine printed an infinite sequence of
alternating 1s and 0s, separated by spaces:

Configuration Behavior

State Symbol Operation Result State

B Blank Write 0, Move Right C

C Blank Write Blank, Move Right E

E Blank Write 1, Move Right F

F Blank Write Blank, Move Right B

 The transition table from the previous slide can be drawn as a
transition diagram too:

B C E F
□, 0, R □, □, R □, 1, R

□, □, R

 If an algorithm exists, a Turing machine can perform that
algorithm

 In essence, a Turing machine is the most powerful model we
have of computation

 Power, in this sense, means the ability to compute some
function, not the speed associated with its computation

 Do you own a Turing machine?

 Given a Turing machine and input x, does it reach the halt
state?

 First, recognize that we can encode a Turing machine as input
for another Turing machine
 We just have to design a system to describe the rules, the states, etc.

 We want to design a Turing machine that can read another

 Douglas Hofstadter uses the
metaphor of turntables

 Imagine that evil people design
records that will shake turntables
apart when they're played

 Maybe turntable A can play record
A and turntable B can play record B

 However, if turntable A plays record
B, it will shatter

 Turing machines can perform all possible computations
 It's possible to encode the way a Turing machine works such

that another Turing machine can read it
 It's easy to make a slight change to a Turing machine so that it

gives back the opposite answer (or goes into an infinite loop)

 You've got a Turing machine M with
encoding m

 You want to see if M will halt on input x
 Assume there is a machine H that can

take encoding m and input x
 H(m,x) is YES if it halts
 H(m,x) is NO if it loops forever

 We create (evil) machine E that takes
description m and runs H(m,m)
 If H(m,m) is YES, E loops forever
 If H(m,m) is NO, E returns YES

H
m

x
YES

NO

H YES

NO

E
m Loop

forever

YES

 Let's say that e is the description of E
 What happens if you feed description e into E?
 E(e) says what E will do with itself as input

 If it returns YES, that means that E on input e
loops forever
 But it can't, because it just returned YES

 If it loops forever, then E on input e would
return YES
 But it can't, because it's looping forever!

 Our assumption that machine H exists must be
wrong

 Clearly, a Turing machine that solves the halting problem doesn’t
exist

 Essentially, the problem of deciding if a problem is computable is
itself uncomputable

 Therefore, there are some problems (called undecidable) for
which there is no algorithm

 Not an algorithm that will take a long time, but no algorithm
 If we find such a problem, we are stuck
 … unless someone can invent a more powerful model of

computation

 Given two finite lists of words A and B, can you pick k words (repetitions allowed) from A
and k words (repetitions allowed) from B so that the words from A concatenated are
exactly the same string as the words from B concatenated

 Example:

 Solution:
 aa + bb + bb = aabbbb = a + a + bbbb

 The Post correspondence problem (PCP) is undecidable (there is no algorithm that can
solve all instances of it)

A B

aa bbbb

aba a

bb abba

 Are two context-free languages the same?
 Is the intersection of two context-free languages empty?
 Is a context-free language equal to Σ*?
 Is a context-free language a subset of another context-free

language?
 Is a given statement of first-order logic provable from a starting

set of axioms?
 Given a set of matrices, is there some sequence that they can be

multiplied in (perhaps with repetitions) that will yield the zero
matrix?

 Does a given Java program have an infinite loop in it?
 Will a given Python program terminate regardless of what

inputs it's given?
 Will computation with input x use all states of a Turing

machine?
 Given input x, will the output of a C++ program be y?

 Problems in NP can be solved in polynomial time on a non-
deterministic computer

 A deterministic computer is the kind you know:
 First it has to consider possibility A, then, it can consider possibility B

 A non-deterministic computer (which, as far as we know, only
exists in our imagination) can consider both possibility A and
possibility B at the same time

Deterministic
A B C D E F

A

B

C

D

E

F

Non-
Deterministic

 EXPSPACE
 Exponential space

 EXP
 Exponential time on a deterministic Turing

machine
 PSPACE
 Polynomial space

 NP
 Polynomial time on a non-deterministic Turing

machine
 P
 Polynomial time on a deterministic Turing

machine
 L
 Logarithmic space on a deterministic Turing

machine

EXPSPACE

EXP

PSPACE

NP

P

L

RE Co-RE

 There are also problems that cannot be solved by any computer (or algorithm) in a finite amount of
time

 Problems in R can be solved by an algorithm in a finite amount of time
 Problems in RE can reach a "yes" answer in a finite amount of time, but no algorithm is guaranteed

to reach completion if the answer is "no"
 Problems in Co-RE can reach a "no" answer in a finite amount of time, but no algorithm is

guaranteed to reach completion if the answer is "yes"

R

EXPSPACE

 R is the set of recursive decision
problems

 RE is the set of recursively
enumerable decision problems

 Co-RE is the complement of set RE

 What can you do when faced with an NP-complete problem?
 Or, more likely, an NP-hard problem, where you come up with the

optimal answer, not just a "yes" or a "no"
 One possibility is using an approximation algorithm
 You don't get the guarantee of the perfect optimal answer
 But you might be able to get a reasonably good answer in

polynomial time

 You have m machines M1, M2,…,Mm
 You have n jobs
 Each job j has a processing time tj
 We can assign jobs A(i) to machine Mi
 The total time that Mi needs to work is:

𝑇𝑇𝑖𝑖 = �
𝑗𝑗∈𝐴𝐴(𝑖𝑖)

𝑡𝑡𝑗𝑗

 We want to minimize the makespan, which is just the longest Ti
 In other words, we want the last machine running to stop running

as early as possible
 Unfortunately, doing so in NP-hard

 We can use a simple greedy algorithm for assigning jobs:
 For each job j, assign it to the machine that has the shortest

completion time so far
 Using this algorithm, what would the makespan be for three

machines M1, M2, and M3, given the following job sizes:
 2, 3, 4, 6, 2, 2

 What would the optimal be?

 Approximation algorithms are often very simple
 The hard part is doing the analysis to show that the result is

not too bad relative to optimal
 Can we give a lower bound on how big the optimal makespan

T* must be?
 It cannot be shorter than the longest job, whatever job that is
 Also, if we perfectly balanced the work among m machines,

each machine would still have to do at least 1
𝑚𝑚

of the total
work

 Proof:
 Let Mi be the machine that get the maximum load T in the greedy assignment
 Let j be the last job assigned to Mi

 When j was assigned to Mi, it had the smallest load of any machine, namely Ti –
tj

 Thus, every machine had load at least Ti – tj

�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘 ≥ 𝑚𝑚 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤
1
𝑚𝑚
�
𝑘𝑘=1

𝑚𝑚

𝑇𝑇𝑘𝑘

 Since ∑𝑘𝑘=1𝑚𝑚 𝑇𝑇𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 and 1
𝑚𝑚
∑𝑖𝑖=1𝑛𝑛 𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇∗

𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗
 But the optimal makespan must be at least as big as any job,

thus 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗, thus:
𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝑡𝑡𝑗𝑗 + 𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇∗ + 𝑇𝑇∗ = 2𝑇𝑇∗

 Since our makespan 𝑇𝑇 = 𝑇𝑇𝑖𝑖, the proof is done.
∎

 Finish load balancing
 Center selection
 Set cover
 Read section 11.3

 Start Assignment 7
 Office hours from 2-4 p.m. today canceled for the eclipse

	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Computability
	Turing machine
	Turing machine example
	A Turing machine as a transition diagram
	Church-Turing thesis
	Halting problem
	Turntables
	Stuff you have to buy for this proof
	Proof by contradiction
	A mind-bending proof
	Halting problem conclusion
	Post correspondence problem
	Other undecidable problems
	More (useful) undecidable problems
	NP
	Deterministic vs. non-deterministic
	Complexity hierarchy
	Going beyond running time
	Three-Sentence Summary of Approximation Algorithms for Load Balancing and Center Selection
	Approximation Algorithms
	Approximation algorithms
	Load balancing
	Greedy algorithm
	Lower bound
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Upcoming
	Next time…
	Reminders

