Week 13 - Monday

COMP 4500



= What did we talk about last time?

= Exam 3 post mortem
= Finished Co-NP
= A little theory of computing




Questions?




Assignment 7




You are the despotic ruler of an ancient empire

Tomorrow is the 25th anniversary of your reign

You have 1,000 bottles of wine you were planning to open for the celebration
Your Grand Vizier uncovered a plot to murder you:

= 10 Yyears ago, a rebel worked in the vineyard that makes your wine

= He poisoned one of the 1,000 bottles you are going to serve tonight and has been waiting
for revenge

= Therebel died an accidental death, and his papers revealed his plan, but not which bottle
was poisoned

The poison exhibits no symptoms until death

Death occurs within ten to twenty hours after consuming even the tiniest amount of

poison

You have over a thousand slaves at your disposal and just under 24 hours to

determine which single bottle is poisoned

You have a few hundred prisoners, sentenced to death

Can you use just the prisoners and risk no slaves?

If so, what's the smallest number of prisoners you can risk and still be sure to find the

bottle?




Computability




= ATuring machine is a mathematical model for computation

= It consists of a head, an infinitely long tape, a set of possible
states, and an alphabet of characters that can be written on the
tape

= A list of rules saying what it should write and should it move left or
right given the current symbol and state



= You can specify a Turing machine with a table giving its
behavior for a specific configuration

= Turing's first example machine printed an infinite sequence of
alternating 1s and os, separated by spaces:

State Symbol Operation Result State
B Blank Write o, Move Right C
C Blank Write Blank, Move Right E
E Blank Write 1, Move Right F
F Blank Write Blank, Move Right B



= The transition table from the previous slide can be drawn as a
transition diagram too:

0,0 R
O, 0, R O, 0, R 0,1, R



= |f an algorithm exists, a Turing machine can perform that
algorithm

= |n essence, a Turing machine is the most powerful model we
have of computation

= Power, in this sense, means the ability to compute some
function, not the speed associated with its computation

= Do you own aTuring machine?



= Given a Turing machine and input x, does it reach the halt
state?

= First, recognize that we can encode a Turing machine as input
for another Turing machine

= We just have to design a system to describe the rules, the states, etc.
= We want to design a Turing machine that can read another



= Douglas Hofstadter uses the
metaphor of turntables

= Imagine that evil people design
records that will shake turntables
apart when they're played

= Maybe turntable A can play record

and turntable B can play record B

= However, if turntable A plays record

B, it will shatter




= Turing machines can perform all possible computations

= |t's possible to encode the way a Turing machine works such
that another Turing machine can read it

= [t's easy to make a slight change to a Turing machine so that it
gives back the opposite answer (or goes into an infinite loop)



You've got a Turing machine M with
encodingm

You want to see if M will halt on input x
Assume there is a machine H that can
take encoding m and input x

= H(m,x)is YES if it halts

= H(m,x) is NO if it loops forever

We create (evil) machine E that takes
description m and runs H(m,m)

= [fH(m,m) is YES, E loops forever
= [f Him,m) is NO, E returns YES

YES

YES

YES —L00P

forever



Let's say that e is the description of E

What happens if you feed description e into E?
= E(e) says what E will do with itself as input

If it returns YES, that means that E on input e
loops forever

= Butit can't, because it just returned YES

If it loops forever, then E on input e would
return YES

= Butit can't, because it's looping forever!

Our assumption that machine H exists must be
wrong




Clearly, a Turing machine that solves the halting problem doesn’t
exist

Essentially, the problem of deciding if a problem is computable is
itself uncomputable

Therefore, there are some problems (called undecidable) for
which there is no algorithm

Not an algorithm that will take a long time, but no algorithm

If we find such a problem, we are stuck

... unless someone can invent a more powerful model of
computation



= Given two finite lists of words A and B, can you pick k words (repetitions allowed) from A
and k words (repetitions allowed) from B so that the words from A concatenated are
exactly the same string as the words from B concatenated

= Example:
A | B
aa bbbb
aba a
bb abba
= Solution:

= aa+bb+bb=aabbbb=a+a+bbbb
= The Post correspondence problem (PCP) is undecidable (there is no algorithm that can
solve all instances of it)



Are two context-free languages the same?

s the intersection of two context-free languages empty?

s a context-free language equal to 2*?

s a context-free language a subset of another context-free
anguage?

s a given statement of first-order logic provable from a starting
set of axioms?

Given a set of matrices, is there some sequence that they can be
multiplied in (perhaps with repetitions) that will yield the zero
matrix?




= Does a given Java program have an infinite loop in it?

= Will a given Python program terminate regardless of what
iInputs it's given?

= Will computation with input x use all states of a Turing
machine?

= Given input x, will the output of a C++ program be y?



= Problems in NP can be solved in polynomial time on a non-
deterministic computer
= A deterministic computer is the kind you know:

= First it has to consider possibility A, then, it can consider possibility B



= A non-deterministic computer (which, as far as we know, only
exists in our imagination) can consider both possibility A and

possibility B at the same time

A B C D E F
Deterministic ¢ >0 > > @ > > @ >

Non-
Deterministic



EXPSPACE

PSPACE

NP

EXPSPACE

= Exponential space
EXP

= Exponential time on a deterministic Turing
machine

PSPACE

= Polynomial space
NP

= Polynomial time on a non-deterministic Turing
machine

= Polynomial time on a deterministic Turing
machine

= Logarithmic space on a deterministic Turing
machine



= Risthe set of recursive decision
problems

= REisthe set of recursively
enumerable decision problems

= Co-RE isthe complement of set RE

There are also problems that cannot be solved by any computer (or algorithm) in a finite amount of
time

Problems in R can be solved by an algorithm in a finite amount of time

Problems in RE can reach a "yes" answer in a finite amount of time, but no algorithm is guaranteed
to reach completion if the answer is "no"

Problems in Co-RE can reach a "no" answer in a finite amount of time, but no algorithmis
guaranteed to reach completion if the answer is "yes"



Three-Sentence Summary of Approximation

Algorithms for Load Balancing and Center Selection




Approximation Algorithms




= What can you do when faced with an NP-complete problem?

= Or, more likely, an NP-hard problem, where you come up with the
optimal answer, not just a "yes" or a "no"

= One possibility is using an approximation algorithm
= You don't get the guarantee of the perfect optimal answer

= But you might be able to get a reasonably good answer in
polynomial time



You have m machinesM_M,,... M _
You have n jobs

Each job j has a processing time t;

We can assign jobs A(r) to machine M,
The total time that M; needs to work is:

Ti: z tj

JEA(D)
= We want to minimize the makespan, which is just the longest T;
= In other words, we want the last machine running to stop running
as early as possible

= Unfortunately, doing so in NP-hard



= We can use a simple greedy algorithm for assigning jobs:

= For each job, assign it to the machine that has the shortest
completion time so far

= Using this algorithm, what would the makespan be for three
machines M, M,, and M,, given the following job sizes:
"=2,3,4, 6,22

= What would the optimal be?



= Approximation algorithms are often very simple

= The hard part is doing the analysis to show that the result is
not too bad relative to optimal

= Can we give a lower bound on how big the optimal makespan
T* must be?

= [t cannot be shorter than the longest job, whatever job thatis

= Also, if we perfectly balanced the work among m machines,

. . 1
each machine would still have to do at least — of the total
work



= Proof:

= Let M, be the machine that get the maximum load T in the greedy assignment
= Letjbe the last job assigned to M;
= When jwas assigned to M, it had the smallest load of any machine, namely T, -

t;

= Thus, every machine had Ioad atleast T;—t

sz>m(T - t)

4<—2n



= Since Yt T = Xz Ji and %Z?ﬂji <T"
T;—t; <T"
= But the optimal makespan must be at least as big as any job,
thust; < T7, thus:
T;=(T;—tj)+ t; <T*+T*=2T"
= Since our makespan T = T;, the proof is done.
_



Upcoming




= Finish load balancing
= Center selection

= Set cover

= Read section 11.3



= Start Assignment 7
= Office hours from 2-4 p.m. today canceled for the eclipse



	COMP 4500
	Last time
	Questions?
	Assignment 7
	Logical warmup
	Computability
	Turing machine
	Turing machine example
	A Turing machine as a transition diagram
	Church-Turing thesis
	Halting problem
	Turntables
	Stuff you have to buy for this proof
	Proof by contradiction
	A mind-bending proof
	Halting problem conclusion
	Post correspondence problem
	Other undecidable problems
	More (useful) undecidable problems
	NP
	Deterministic vs. non-deterministic
	Complexity hierarchy
	Going beyond running time
	Three-Sentence Summary of Approximation Algorithms for Load Balancing and Center Selection
	Approximation Algorithms
	Approximation algorithms
	Load balancing
	Greedy algorithm
	Lower bound
	Greedy algorithm gets a makespan T ≤ 2T*
	Proof continued
	Upcoming
	Next time…
	Reminders

